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Abstract We identified a new peroxisomal disorder caused
by a deficiency of the enzyme 

 

a

 

-methylacyl-coenzyme A
(CoA) racemase. Patients with this disorder show elevated
plasma levels of pristanic acid and the bile acid intermedi-
ates di- and trihydroxycholestanoic acid (DHCA and THCA),
which are all substrates for the peroxisomal 

 

b

 

-oxidation sys-
tem. 

 

a

 

-Methylacyl-CoA racemase plays an important role in
the 

 

b

 

-oxidation of branched-chain fatty acids and fatty acid
derivatives because it catalyzes the conversion of several (2

 

R

 

)-
methyl-branched-chain fatty acyl-CoAs to their (2

 

S

 

)-isomers.
Only stereoisomers with the 2-methyl group in the (

 

S

 

)-configu-
ration can be degraded via 

 

b

 

-oxidation. In this study we
used liquid chromatography/tandem mass spectrometry
(LC-MS/MS) to analyze the bile acid intermediates that
accumulate in plasma from patients with a deficiency of 

 

a

 

-
methylacyl-CoA racemase and, for comparison, in plasma
from patients with Zellweger syndrome and patients with
cholestatic liver disease.  We found that racemase-
deficient patients accumulate exclusively the (

 

R

 

)-isomer of
free and taurine-conjugated DHCA and THCA, whereas in
plasma of patients with Zellweger syndrome and patients
with cholestatic liver disease both isomers were present. On
the basis of these results we describe an easy and reliable
method for the diagnosis of 

 

a

 

-methylacyl-CoA racemase-
deficient patients by plasma analysis. Our results also show
that 

 

a

 

-methylacyl-CoA racemase plays a unique role in bile
acid formation.

 

—Ferdinandusse, S., H. Overmars, S. Denis,
H. R. Waterham, R. J. A. Wanders, and P. Vreken.
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Peroxisomes play an important role in the biosynthesis
of bile acids from cholesterol because peroxisomal 

 

b

 

-oxi-
dation is responsible for chain shortening of the C

 

27

 

 bile
acid intermediates di- and trihydroxycholestanoic acid
[3

 

a

 

,7

 

a

 

-dihydroxy-5

 

b

 

-cholestan-26-oic acid (DHCA) and
3

 

a

 

,7

 

a

 

,12

 

a

 

-trihydroxy-5

 

b

 

-cholestan-26-oic acid (THCA)],

 

which results in formation of the primary bile acids cheno-
deoxycholic acid and cholic acid, respectively. The en-
zymes involved in this process not only handle DHCA and
THCA as substrates but also other 2-methyl branched-
chain fatty acids, such as pristanic acid (see 

 

Fig. 1

 

). The
first step of 

 

b

 

-oxidation is catalyzed by branched-chain
acyl-coenzyme A (CoA) oxidase (1, 2), which converts the
2-methyl branched-chain acyl-CoAs into their enoyl-CoA
ester. These are subsequently hydrated into a hydroxyacyl-
CoA and then dehydrogenated into a 

 

b

 

-ketoacyl-CoA.
Both these steps are catalyzed by D-bifunctional protein
(3–6). Finally, sterol carrier protein X (SCPx) is responsi-
ble for the thiolytic cleavage of the 

 

b

 

-ketoacyl-CoA esters
of pristanic acid as well as DHCA and THCA (7–11).

It has been demonstrated that the peroxisomal 

 

b

 

-oxida-
tion system is stereospecific, because the first enzyme,
branched-chain acyl-CoA oxidase, can handle only (2

 

S

 

)-
isomers (12, 13). For this reason, a racemase called 

 

a

 

-
methylacyl-CoA racemase, identified by Conzelmann and
coworkers (14, 15), is also involved in the 

 

b

 

-oxidation of
branched-chain fatty acids. This enzyme is able to convert
(2

 

R

 

)-pristanoyl-CoA, (25

 

R

 

)-DHC-CoA, and (25

 

R

 

)-THC-
CoA into their (

 

S

 

)-isomers (14, 15) (Fig. 1). This conver-
sion is essential for degradation of these substrates, be-
cause naturally occurring pristanic acid is a mixture of two
diastereomers, (2

 

R

 

,6

 

R

 

,10

 

R

 

) and (2

 

S

 

,6

 

R

 

,10

 

R

 

) (16), whereas
in the case of DHCA and THCA only the (25

 

R

 

)-isomers
are produced from cholesterol (17–20). As a conse-
quence, patients who are unable to convert the (

 

R

 

)-isomer

 

Abbreviations: DHCA, 3

 

a

 

,7

 

a

 

-dihydroxy-5

 

b

 

-cholestan-26-oic acid; EDC,
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-HCl; ESI, electrospray
ionization; IS, internal standard; LC-MS/MS, liquid chromatography/
tandem mass spectrometry; MRM, multiple reaction monitoring; SIR,
single ion recording; THCA, 3

 

a

 

,7

 

a

 

,12

 

a

 

-trihydroxy-5

 

b

 

-cholestan-26-oic
acid. 
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of pristanoyl-CoA and the C

 

27

 

 bile acyl-CoAs to their re-
spective (

 

S

 

)-isomers, which are the true substrates for the

 

b

 

-oxidation system, are predicted to accumulate these
compounds in their plasma. We have identified three pa-
tients with a complete 

 

a

 

-methylacyl-CoA racemase defi-
ciency due to mutations in the encoding gene as shown by
expression studies in 

 

Escherichia coli

 

 (21). The main clini-
cal symptom in these patients was an adult-onset sensory
motor neuropathy. As expected, plasma analysis in these
patients revealed an accumulation of both pristanic acid
and the bile acid intermediates DHCA and THCA.

In the present study we further analyzed the C

 

27

 

 bile
acid intermediates accumulating in plasma from these pa-
tients and, for comparison, from patients with Zellweger
syndrome and patients suffering from cholestatic liver dis-
ease, using liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) to discriminate between the differ-
ent diastereoisomers of DHCA and THCA. The results
obtained indicate that 

 

a

 

-methylacyl-CoA racemase is, in-
deed, indispensable for the oxidation of the bile acid
intermediates and that there is no other racemase that
takes over the role of the deficient enzyme. Furthermore,
the plasma analysis we describe in this article provides an
easy and reliable method by which to diagnose 

 

a

 

-methyl-
acyl-CoA racemase-deficient patients.

MATERIALS AND METHODS

 

Materials

 

The two diastereoisomers of THCA were obtained as de-
scribed previously (21). Taurine was purchased from Serva
(Heidelberg, Germany), 1-ethyl-3-(3-dimethylaminopropyl)car-
bodiimide-HCl (EDC) was from Sigma (St. Louis, MO), and
[2,2,4,4-

 

2

 

H

 

4

 

]cholic acid was from J. H. Ritmeester BV (Utrecht,
The Netherlands).

 

Methods

 

Patients.

 

Plasma samples were obtained from three patients
with a deficiency of 

 

a

 

-methylacyl-CoA racemase, four patients
with Zellweger syndrome, and five patients with cholestatic liver
disease. The ages of the patients with cholestatic liver disease

(three males and two females) and Zellweger syndrome (two
males and two females) varied between 1 month and 3 years.
The 

 

a

 

-methylacyl-CoA racemase-deficient patients all had dis-
tinct mutations in the encoding gene, and racemase activity in fi -
broblasts of these patients as measured with THC-CoA as sub-
strate was completely deficient (21). Patient 1, a boy, is now 7
years old, patient 2 is a 49-year-old man, and patient 3 is a 48-
year-old woman. The patients with Zellweger syndrome all had
the clinical and biochemical abnormalities described for Zell-
weger syndrome (22). Informed consent was obtained for all pa-
tients whose plasma was studied and the studies were approved
by the Institutional Review Board of the Academic Medical Cen-
ter, University of Amsterdam (Amsterdam, The Netherlands).

 

Derivatization of THCA with taurine.

 

The two diastereoisomers of
THCA were derivatized with taurine to allow determination of the
stereospecificity of the different isomers of taurine-conjugated
THCA in the plasma of patients. Derivatization of THCA was
performed essentially as described by Zhang et al. (23). Briefly,
0.37 

 

m

 

mol of (25

 

R

 

)- or (25

 

S

 

)-THCA was dissolved in 0.2 ml of 0.1
M pyridine hydrochloride (pH 5.0). Fifty micromoles of EDC
and 100 

 

m

 

mol of taurine were added and the mixture was left for
16 h at room temperature. It was then passed through an SPE-C

 

18

 

column (1.5 

 

3

 

 0.8 cm) ( J. T. Baker, Phillipsburg, NJ). After wash-
ing the column with water, taurine-conjugated THCA was eluted
with methanol. The yield was approximately 70%.

 

Plasma sample preparation.

 

Fifty microliters of the internal stan-
dards (IS) [2,2,4,4-

 

2

 

H

 

4

 

]cholic acid or [2,2,4,4-

 

2

 

H

 

4

 

]taurocholic
acid was added to 50 

 

m

 

l of plasma. The mixture was deprotein-
ized by addition of 500 

 

m

 

l of acetonitrile followed by subsequent
centrifugation for 15 min at 20,000 

 

g

 

av

 

 at 4

 

8

 

C. The supernatant
was then evaporated under a stream of N

 

2

 

 gas and the residue
was redissolved in 100 

 

m

 

l of methanol–water 40:60 (v/v).
Twenty-five microliters was injected into an LC-MS/MS system.

 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS).

 

LC-
MS/MS was carried out with a Hewlett-Packard (Palo Alto, CA)
HP 1100 binary pump and a Micromass (Manchester, UK) Quat-
tro II tandem mass spectrometer equipped with electrospray ion-
ization (ESI). The LC separation was per formed on an Alltima
C

 

18

 

 reversed-phase (5 

 

m

 

m) column (250 

 

3

 

 2.1 mm) (Alltech,
Deerfield, IL) and optimal resolution was achieved by elution
with a linear gradient of methanol (70% 

 

→

 

 100%) in 5 mM am-
monium formate buffer (pH 5.0) at a flow rate of 0.3 ml/min.
MS/MS parameters were as follows: negative ion mode, capillar y
voltage 3.1 kV, cone voltage 70 V, collision energy 60 eV, collision
pressure 0.003 mBar. Argon was used as collision gas. Taurine
conjugates were analyzed by multiple reaction monitoring, using

Fig. 1. Schematic representation of the steps in-
volved in the oxidation of (3R)- and (3S)-phytanic
acid as derived from dietary sources and of (25R)-
THCA produced from cholesterol in the liver.
After the activation of (3R)- and (3S)-phytanic acid
to their corresponding coenzyme A (CoA) esters,
they both become substrates for the peroxisomal
a-oxidation system, which produces (2R)- and
(2S)-pristanoyl-CoA. Because branched-chain acyl-
CoA oxidase, the first enzyme of the b-oxidation
system, can handle only the (S)-stereoisomer,
(2R)-pristanoyl-CoA needs to be converted by
a-methylacyl-CoA racemase (AMACR) into its
(2S)-stereoisomer. The bile acid intermediates
DHCA and THCA are exclusively produced as
(25R)-stereoisomers. To be b-oxidized, the CoA
esters of the (25R)-stereoisomer also need to be
converted by AMACR into their (25S)-stereoisomers.
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the following transitions (IS 518.3 

 

→ 

 

79.8; tauro-DHCA 540.3 

 

→

 

79.8; tauro-THCA 556.3 

 

→

 

 79.8); the free compounds were ana-
lyzed by single ion recording (IS 411.3; DHCA 433.3; THCA
449.3). The limit of detection of the bile acid intermediates was
0.05 

 

m

 

M.

RESULTS AND DISCUSSION

DHCA and THCA are obligatory intermediates in the
major biosynthesis route of the primary bile acids chenode-
oxycholic acid and cholic acid from cholesterol. They are
produced from 5b-cholestane-3a,7a-diol and 5b-cholestane-
3a,7a,12a-triol, respectively. The mitochondrial 27-hydroxy-
lase involved in this pathway has been shown to be ste-
reospecific, which exclusively leads to the formation of the
(25R)-isomer of DHCA and THCA (17–20). Activation of
DHCA and THCA occurs at the membrane of the endo-
plasmic reticulum followed by transport of DHC-CoA and
THC-CoA into the peroxisome via a mechanism yet un-
known. In the peroxisome, (25R)-DHC-CoA and (25R)-
THC-CoA are rapidly converted by a-methylacyl-CoA race-
mase (14, 15) into their (25S)-isomers, which can enter
the b-oxidation spiral.

Three patients have been identified with a deficiency of
a-methylacyl-CoA racemase due to mutations in the en-
coding gene. Plasma analysis revealed a marked increase in
the levels of pristanic acid and of the C27 bile acid interme-
diates DHCA and THCA (21). These compounds, however,
are known to accumulate in several other peroxisomal dis-
orders, including isolated defects in the peroxisomal b-
oxidation system and defects in peroxisomal biogenesis
(22, 24–26). To examine the plasma C27 bile acids in
closer detail, we developed a method to study the differ-
ent diastereoisomers of DHCA and THCA in plasma from
patients with Zellweger syndrome and patients with an iso-
lated a-methylacyl-CoA racemase deficiency. In addition,
we studied plasma from patients with cholestatic liver dis-
ease, who also accumulate bile acid intermediates in plasma
but do not have a metabolic disorder affecting the oxida-
tion of branched-chain fatty acids and fatty acid derivatives
per se. The diastereoisomers of both free and taurine-conju-
gated C27 bile acids could be studied by our LC-MS/MS
method. To determine the elution pattern of the diastere-
oisomers of taurine-conjugated THCA, (25R)- and (25S)-
THCA were derivatized with taurine. Both free and taurine-
conjugated (25S)-THCA eluted at a lower concentration
of methanol than the (25R)-isomer (Fig. 2). Unfortunately,
no standards were available for DHCA. Therefore, we can
only speculate about the identification of the diastereoiso-
mers of free and taurine-conjugated DHCA.

Examination of plasma from four different patients
with Zellweger syndrome revealed the presence of two di-
astereoisomers of both free and taurine-conjugated
DHCA and THCA (Table 1 and Fig. 2). DHCA was mainly
present as free acid, whereas in most patients more THCA
was taurine conjugated than unconjugated. The predomi-
nant peak of both free and taurine-conjugated THCA cor-
responded to the (25R)-isomer. The mean values (6SD)
for the (25S/25R)-isomer ratios in these four patients

were 0.23 (60.05) and 0.26 (60.03) for free and taurine-
conjugated THCA, respectively (Table 1). These results
are in agreement with the (25S/25R)-THCA ratio found
in urine from an infant with Zellweger syndrome by Une
and coworkers (27). The presence of both isomers indi-
cates that a-methylacyl-CoA racemase is enzymatically ac-
tive in patients with Zellweger syndrome. A residual race-
mase activity of 10% for pristanoyl-CoA in fibroblasts from
patients with Zellweger syndrome compared with control
subjects has indeed been reported (15), and corresponds
to the results we obtained with THC-CoA as substrate in fi-
broblasts from patients with Zellweger syndrome [control
subjects, 97 6 28 pmol/min/mg (n 5 13); patients with
Zellweger syndrome, 17 6 5 pmol/min/mg (n 5 3)]. For
free and taurine-conjugated DHCA, respectively, the
mean values (6SD) for the peak 1/peak 2 ratios in the
four patients with Zellweger syndrome were 0.19 (60.02)
and 0.43 (60.08) (Table 1).

Fig. 2. Separation of the diastereoisomers of free and taurine-
conjugated DHCA and THCA by LC-MS/MS. Analysis of the stan-
dards for (25S)- and (25R)-THCA in the free acid form and taurine-
conjugated are shown (A and B, respectively). Plasma analysis of
patients with Zellweger syndrome (C) revealed the presence of
both diastereoisomers of free and taurine-conjugated THCA,
whereas patients with a deficiency of a-methylacyl-CoA racemase
(D) accumulate only the (25R)-isomer. No standards were available
of the separate diastereoisomers of free and taurine-conjugated
DHCA, but the exclusive accumulation of peak 2 for both com-
pounds in racemase-deficient patients strongly suggests that peak 2
represents the (25R)-isomer.
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In the patients with cholestatic liver disease the mean
value (6SD) for the (25S/25R)-isomer ratios for taurine-
conjugated THCA was 0.25 (60.08), which is similar to
the ratio found in patients with Zellweger syndrome
(0.26 6 0.03, P . 0.05; t-test). These results confirm that
plasma from Zellweger patients can be used as a control in
this assay, even though the biogenesis of peroxisomes,
where the racemase is localized, is disturbed in these pa-
tients. The amount of free THCA and free and taurine-
conjugated DHCA in plasma of these patients was too low
to draw any conclusions about the distribution of the dif-
ferent diastereoisomers.

Plasma analysis of C27 bile acid intermediates in the
three patients with a defined a-methylacyl-CoA racemase
deficiency revealed the exclusive accumulation of the (25R)-
isomer of both free and taurine-conjugated THCA (Table
1 and Fig. 2). Only one diastereoisomer of DHCA was
present in both free acid form and in taurine-conjugated
form. This strongly suggests that, as for THCA, peak 2 of
free and taurine-conjugated DHCA, which elutes at a
higher methanol concentration than peak 1, represents
the (25R)-isomer (Fig. 2). The concentrations of the nor-
mal C24 bile acids cholic acid and chenodeoxycholic acid
were in the lower part of the normal range. These bile
acids could be synthesized by the alternative 25-hydroxyla-
tion pathway (28), but the lack of 25-hydroxylated bile al-
cohols (data not shown) in plasma of racemase-deficient
patients suggests that other pathways might be responsible
for the residual C24 bile acid biosynthesis.

Routine plasma analysis of adult patients with sensory
motor neuropathy usually does not include analysis of bile
acids and branched-chain fatty acids. This, together with

the fact that the clinical symptoms associated with a-meth-
ylacyl-CoA racemase deficiency are relatively mild, implies
that thus far many patients with a-methylacyl-CoA race-
mase deficiency may have remained undiagnosed. The
method described in this article provides a unique diag-
nostic tool for this disorder. Only a small amount of plasma
is needed, the analysis takes little time, and the exclusive
accumulation of the (25R)-isomer of free and taurine-
conjugated DHCA and THCA indisputably reveals a defi-
ciency of a-methylacyl-CoA racemase in the patient. Fi-
nally, our data indicate that a-methylacyl-CoA racemase
plays an indispensable role in bile acid formation.

This work was supported by the Princess Beatrix Fund (The
Hague, The Netherlands).
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